skip to main content


Search for: All records

Creators/Authors contains: "Jin, Qi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Developing efficient and robust terahertz (THz) sources is of incessant interest in the THz community for their wide applications. With successive effort in past decades, numerous groups have achieved THz wave generation from solids, gases, and plasmas. However, liquid, especially liquid water has never been demonstrated as a THz source. One main reason leading the impediment is that water has strong absorption characteristics in the THz frequency regime. A thin water film under intense laser excitation was introduced as the THz source to mitigate the considerable loss of THz waves from the absorption. Laser-induced plasma formation associated with a ponderomotive force- induced dipole model was proposed to explain the generation process. For the one-color excitation scheme, the water film generates a higher THz electric field than the air does under the identical experimental condition. Unlike the case of air, THz wave generation from liquid water prefers a sub-picosecond (200 – 800 fs) laser pulse rather than a femtosecond pulse (~50 fs). This observation results from the plasma generation process in water. For the two-color excitation scheme, the THz electric field is enhanced by one-order of magnitude in comparison with the one-color case. Meanwhile, coherent control of the THz field is achieved by adjusting the relative phase between the fundamental pulse and the second-harmonic pulse. To eliminate the total internal reflection of THz waves at the water-air interface of a water film, a water line produced by a syringe needle was used to emit THz waves. As expected, more THz radiation can be coupled out and detected. THz wave generation from other liquids were also tested. 
    more » « less
  2. null (Ed.)
  3. The CS community has struggled to assess student learning at the K-8 level, with techniques ranging from one-on-one interviews to written assessments. While scalable, automated techniques exist for analyzing student code, a scalable method for assessing student comprehension of their own code has remained elusive. This study is a first step in bridging the gap between the knowledge gained from interviews and the time efficiency and scalability of written assessments and automated analysis. The goal of this study is to understand how student answers on various types of questions differ depending on whether they are being asked about their own code or generic code. We find that while there were no statistically-significant differences in overall scores, questions about generic and personalized code of comparable complexity are far from equivalent. Our qualitative analyses revealed interesting patterns in student responses, inviting further research into this assessment technique. In particular, students answered differently from students with generic code when presented with individual blocks from their code taken out of context and placed into different code snippets, and students answered in a way that demonstrates a functional, instead of structural, understanding on Explain in Plain English (EiPE) questions. 
    more » « less